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The detection of faulty parts is of fundamental importance during the manufacturing
process. Most traditional acoustic techniques for fault diagnosis are based on analysis of
the sound pressure emitted by the device. However, the performance of such methods
are strongly limited for industrial scenarios due the presence of high levels of background
noise. Furthermore, to carry out fault detection in rotating machinery, the exact measure
of rotational speed of the shaft is required. The placement of a specific tachometer for
this purpose is not often possible at the end of the assembly line due to time or spatial
constraints. Particle velocity sensors are a non-contact solution that are able to capture
surface vibration and can therefore be used to simultaneously quantify the vibro-acoustic
behavior of a device and to perform order tracking. In addition, they provide better
signal to noise ratio as they are less affected by background noise when measurements
are performed close to the radiating surface.

This paper presents the application of a single 3D acoustic particle velocity sensor for
fault detection in rotating machinery under factory conditions with high levels of back-
ground noise. The implemented method is able to perform tachless order analysis and
make use of Gaussian mixture models for the fault classification. The proposed method
provides evidence for the viability of particle velocity-based solutions for end of line con-
trol applications in noisy conditions.

1 INTRODUCTION

In recent years, end-of-line (EOL) tests are required for most NVH applications in order to detect
defective parts during the manufacturing process. Traditionally, subjective rating has been used
as a standard for estimating the quality of the object tested. However, results are often biased,
possibly leading to contradictory scores depending on the person testing. As a result, there is an
growing trend of developing EOL solutions based on objective criteria that correlate well with
controlled subjective scores.
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The vibro-acoustic signature of a device has proven useful for detecting problems and
classifying manufacturing defects [1]. The signature is highly dependent upon the excitation
and load, which can reveal a series of problems relative to operating condition. Each defect
should be assessed differently, linking the measured quantity to the physical cause of the problem.
Understanding the root cause allows for designing test procedures that capture a particular
vibro-acoustic behaviour related to the defect.

For the case of rotating machinery in particular, it is know that the vibro-acoustic signature of
rotating machinery relates to periodic events, such as a rotating shaft, gear-mesh or ball-bearing
movement. For that reason, many diagnosis techniques, like order analysis, require an exact
measure of the rotational speed of the shaft. Traditionally, direct measurement of the shaft
requires the placement of tachometers, which needs set-up time and proper handling to avoid
errors during the measurement. However, during end of line testing, direct measurement is
not possible due to time constraints or shaft location not being accessible after assembly. The
extraction of rotational speed information from the vibro-acoustic signal (tachless) would allow
order analysis features to be obtained without a dedicated tachometer sensor.

Moreover, conventional techniques that are based upon the sound emitted at a certain distance
in a controlled environment, are often not viable on a production line. The high levels of
background noise and reverberation, along with low excitation emitted by the source, prevent
the gathering of acoustic data in-situ, reducing the suitability of sound pressure based solutions.
In contrast, the use of acoustic particle velocity transducers offers a significant advantage over
pressure-based testing techniques. Measurements performed in the proximity of the device
are proportional to the surface vibration [2] and hardly affected by noise generated by the
surrounding machinery [3].

This paper shows that a single 3D acoustic vector sensor can be used for fault detection
and classification of rotating devices during end of line testing. The proposed non-contact
approach extracts instantaneous RPM information to obtain the vibro-acoustic signature in the
order domain for several excitation loads. Firstly, the procedure for tachless order tracking and
analysis is described, followed by some examples of fault assessment and feature extraction
based on order analysis are illustrated. Finally, the fault classification method based on Gaussian
Mixture Models (GMM) is outlined.

2 ORDER ANALYSIS OF ROTATING MACHINERY

The vibro-acoustic behaviour of a machine varies greatly depending upon the operational speed
and load. Many noise control strategies rely upon the direct link that can often be established
between the noise emitted and the rotational speed. Most of the components that comprise the
device are likely to cause periodic excitations at frequencies which are integer multiples of the
main rotational speed. This key relationship can be used as an indication to identify the main
sources of noise. The frequency assessment of vibro-acoustic signals as a function of rotational
speed is usually referred to as order analysis [1].

The transformation from the time domain to the order domain requires a precise estimation of
the machine rotational speed and a suitable signal processing method. The following sections
cover these aspects, describing the techniques that were implemented for the application studied
in this paper.

2.1 Tachless RPM tracking

Tachometers are typically used to measure the shaft speed of rotating machinery by counting
the amount of pulses per shaft revolution. Although their accuracy can be high, the installation
of such sensors may not be suitable for applications where time is limited, such as end-of-line
tests [4]. Several tachless order tracking methods have been proposed, firstly using sound
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pressure in a car interior [5] and more recently measuring surface acceleration [6]. The former
technique is limited to environments with a very high signal-to-noise ratio, whereas the latter
method requires attaching a transducer to the vibrating structure, a process that may be unsuitable
for certain applications. As an alternative, the use of acoustic particle velocity is hereby proposed.
As pointed out above, the normal acoustic particle velocity measured close to a high impedance
surface is less affected by background noise than sound pressure. On the other hand, a non-
contact solution that is able to capture surface vibration and simultaneously quantify the acoustic
output of a device is very useful for estimating the noise impact of a machine in its operational
environment.

The acoustic signal captured in the vicinity a complex device often contains a combination of
strong tonal components proportional to the main rotational speed, and broadband noise caused
by mechanisms of a random nature, such as flow-induced vibrations. An order tracking algorithm
has been developed based on some of the ideas proposed for pitch extraction of polyphonic
music [7, 8] and speech [9]. It should be noted that in the case studied, the amplitude of most
of the orders may be apparent at certain speeds or loads, but it cannot be assumed to be higher
than that of the random noise during the whole test. As a result, the main aim of the algorithm
designed is to extract tracking information from the harmonic series in order to minimize the
error between a polynomial model and the measurement data. The tracking algorithm can be
summarized by the steps shown in Figure 1.

x (t) Time
selection

PSD Whitening Peak
detection

Harmonic
selection

f0
^

Figure 1. Flow chart of the steps involved in the RPM tracking process.

Firstly, the power spectral density (PSD) of a short time section of the measurement data
is computed. Following this, a whitening procedure is applied in order to suppress timbral
information and thus increase the uniformity of the signal. The whitening coefficients were
calculated from a smoothed version of the spectrum using a long median-based filter. The signal
is then compared to a relative threshold, obtaining a selection of the main frequency peaks. The
harmonic sum that maximizes the total energy and at the same time minimizes the model error is
then selected to compute the instantaneous rotating frequency. This process is repeated across
the entire time data. Finally, polynomial curve fitting is applied to compute the RPM for every
data sample.

2.2 The order spectrum

When analyzing rotating machinery it is often desirable to study excitation as a function of
harmonics or orders of the shaft speed [1]. If the data acquired is synchronized with the rotational
speed, the Fourier transform of the signal will directly lead to the order spectrum, i.e.

X(Ω) =

∫
x(φ)e−jΩφdφ (1)

where Ω is the evaluated order and φ is the shaft angle. Although analog phase-locked systems
were formerly used for this purpose, practical limitations lead to the search for alternative
digital solutions. Nowadays, the most extensively used method to convert the data to the order
domain is by resampling the recorded signals using the corresponding rotational speed via
digital interpolation. However, significant improvements can be obtained by using the Velocity
Synchronous Discrete Fourier Transform (VSDFT) introduced by Borghesani et al. [10]. The
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order domain conversion of the VSDFT is derived from the fundamental relationship shown in
Equation 1, applying a change in the domain of integration, i.e.

X(Ω) =

∫
x(t)ω(t)e−jΩφ(t)dt (2)

where ω(t) denotes the instantaneous shaft speed. The implementation of the above expression
requires the discretization of both order and time domain, i.e.

VSDFT[k] =
∆t

Θ

N−1∑
n=0

x[n∆t]ω[n∆t]e−jΩ[k∆Ω]φ[n∆t]dt (3)

where Θ is a normalization factor related to the acquisition time window in the angular domain.
In practice, ω[n∆t] is extracted from the RPM tracking procedure explained above. On the
other hand, φ[n∆t] can be estimated using numerical integration on ω[n∆t]. Figure 2 shows an
example of the conversion from the time-frequency domain to the RPM-order domain using the
VSDFT.

Figure 2: Example of a time-frequency domain representation during the run-up (left). Equivalent
RPM-order domain representation (right) with the performed tachless order tracking.

3 FAULT ASSESSMENT AND FEATURES EXTRACTION

Multiple test procedures are usually required to assess different defects under specific operating
conditions. Each procedure aims to extract features that are related to the type of problem evalu-
ated. The latter application of a probabilistic model allows for the detection of manufacturing
defects, as shown in Section 4.

For the case studied, several evaluation criteria were developed to asses different defects of
rotating machinery. For the sake of clarity, this section is focused on only two of the procedures:
unbalance and vibro-acoustic anomalies.

3.1 Unbalance

Unbalance is mainly caused by a misalignment between the local centre of mass and the rotating
axis. This deviation induces forces rotating at the shaft speed that may excite the structure of
the device. Even a small misalignment during the manufacturing process could yield unbalance
problems and therefore excessive vibrations.
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In practice, unbalance generates a significant power increment at the first harmonic of the
rotating shaft speed, being more apparent at higher excitations. The implemented detection
method uses the acoustic particle velocity signals acquired during a run-up in three orthogonal
directions. The maximum level reached in the first order in each sensor is used as a feature
vector, addressing structural resonances in every direction. In the figure 3 a comparison of the
first order response of an unbalanced and a balanced device is shown.
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Figure 3: Comparison of balanced (left) and unbalanced (right) sample. First order energy in the
velocity directions ux, uy, uz compared with the overall energy |u|.

3.2 Vibro-Acoustic Anomalies

Anomaly detection deals with the determination of abnormal functioning of a device. In the case
of rotating devices, fault detection using the vibro-acoustic signal could be challenging provided
that the defect could be non-stationary, only appearing at certain operating conditions.

The proposed method obtains statistical features from the rpm-order representation, calculated
from a set of measurements of devices with normal behavior, of the vibro-acoustic signal during
run-up. Based on this, a probabilistic model, as shown in Section 4, is built. The anomalous
devices are assumed to show significantly different vibro-acoustic behavior and therefore to have
a lower probability of belonging to the normal device model.

The features extracted are the mean and maximum values reached during the run-up in a
representative set of orders. These two features were shown to be sufficient to detect anomalies
in the devices.
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Figure 4: Comparison of the mean order power during a run-up of a normal sample (green) and
a defective sample (red).
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4 CLASSIFICATION

4.1 Gaussian Mixture Models

Gaussian Mixture Models (GMM) have been used for many pattern recognition applications. It
is a statistical model that has been shown to be robust for the classification of dynamic signals,
making it very suitable for the classification of vibration data subject to load and fault severity
variations [11, 12].

A GMM is used to model the features of a signal class, i.e. faulty or normal. It represents the
probability density function (PDF) of the observed class and comprises a weighted sum of G
Gaussian distributions:

p(X | λm) =
G∑
j=1

ωjpj(X) (4)

where λm is the mixture model, ωj is the weight of the j-th Gaussian component with a
multivariate probability distribution given by [13]

pj(X) =
1√

(2π)Nf |Σj|
e
− 1

2

[
(X−µj)

′
Σ−1

j (X−µj)
]

(5)

where wj , µj and Σj are the weight, the mean and the covariance matrix of the distribution, and
X = {~x1, ..., ~xNf

} is the sequence of Nf feature vectors in the analysed segment.
The GMM for the given class model m is represented by

λm = {wj, µj,Σj} j = 1, ..., G (6)

where wj and µj are the weight and mean of the distribution, and Σj is the covariance matrix.
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Figure 5. Flow chart of the steps involving the testing procedure

4.2 Training

In the training phase, the parameters of the model λm are obtained using the Expectation-
Maximisation (EM) algorithm [13] for each class. The model parameters {wj, µj,Σj} are found
using the EM algorithm to maximize the likelihood of a sample belonging to certain class m.
The estimation of model parameters, i.e. the number of mixtures G, was done using 10-fold
cross-validation [14].
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4.3 Testing

In the testing phase, a score is obtained for an unknown signal using the GMMs. Given a
sequence of Nf feature vectors in a segment X = {~x1, ..., ~xNf

}, a scoring function is given by
log-likelihood ratios (LLR) for two different testing scenarios [13]:

• Anomaly detection: A score indicating that the sample belongs to the normal class model
λ1N :

Λ1(X) = log [p (X | λ1N)] (7)

• Good/Faulty detection: A score indicating that the sample belongs to the faulty λ2F class
model or the normal λ2N class models:

Λ2(X) = log [p (X | λ2F )]− log [p (X | λ2N)] (8)

The decision thresholds Λθ1 and Λθ2 are adjusted to discriminate between normal and anomaly
samples in the first case, and to minimise the trade-off between false negatives (rejecting faulty
samples) and the false positives (accepting good samples) in the second case:

Λ1(X)
anomaly

≶
normal

Λθ1, Λ2(X)
faulty

≶
good

Λθ2 (9)

With regard to the testing procedures shown in Section 3, it should be noted that the unbalance
test uses the score function Λ1(X) for good/faulty sample detection, and the anomaly test uses
the score function Λ2(X) for abnormal sample detection.
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Figure 6: An example of a Log-Likelihood Ratio (LLR) histogram and decision threshold (Λθ).

5 CONCLUSION

A fault detection method for rotating machinery based upon tachless order analysis using a 3D
acoustic particle velocity sensor has been proposed. The use of single probe enables not only
the quantification of vibro-acoustic emissions and the detection of noise and vibration problems
but also the tracking of the operational speed of rotation. The method was able to perform
fault classification and anomaly detection using Gaussian Mixture Models. In addition, the
proposed technique is capable of working in the presence of high background noise. This proves
the viability of particle velocity sensors for end of line fault detection using automated quality
control systems in factory conditions.
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